

Partial credit will be assigned based upon the correctness, completeness, and clarity of your answers. Correct answers without proper justification will not receive full credit.

Calculators are not allowed.

Exercise 1 4 points

- 1. Let A and B be two events. Recall the definition of the above assertions:
 - (a) A and B are independent.
 - (b) A implies B.
- 2. Assume that A and B satisfy:

$$\mathbb{P}(A) = \frac{1}{5}$$
 and $\mathbb{P}(B) = \frac{2}{3}$.

Compute $\mathbb{P}(A \cup B)$ in each of the following situations:

- (a) A and B are exclusives.
- (b) A and B are independent.
- (c) A implies B.
- (d) $P_B(A) = \frac{1}{2}$.

Exercise 2 6 points

Maxime has a chicken. Every night, it lays one egg with probability 3/4 or doesn't lay any egg with probability 1/4, independently from one night to another.

- 1. Let X be the number of eggs after 7 nights.
 - (a) What is the probability distribution of X?
 - (b) Maxime decides that he will sell all his eggs next week. He sells an egg at \$0.2. Denote by Y his winnings.
 - i. What is the link between X and Y?
 - ii. How much can Maxime expect to win next week?

One year has passed and Maxime's chicken looks bad: bird flu got to it. It will now lay an egg with probability 1/20.

- (a) Denote by Z the number of nights Maxime has to wait before his chicken lays its first egg. What is the probability distribution of Z?
- (b) Marcelle will be visiting Maxime in 7 days. Compute the probability that Maxime will have at least 1 egg to make her crepes.

Exercise 3 10 points

The number of vehicles arriving to a toll¹ between time 0 and time t is denoted by N_t . We suppose that $N_t \sim \mathcal{P}(\lambda t)$ where $\lambda > 0$ is a known parameter.

- 1. What is the expected value of N_t ? What is its variance?
- 2. Let X_1 be the arrival time of the first vehicle.
 - (a) Let t > 0. What is the link between the events $(X_1 > t)$ and $(N_t = 0)$? Deduce $\mathbb{P}(X_1 > t)$.
 - (b) What is the probability distribution of X_1 ?
 - (c) Give $\mathbb{E}(X_1)$ and $\mathbb{V}ar(X_1)$.
- 3. For all $n \in \mathbb{N}^*$, denote by X_n the arrival time of the *n*-th vehicle to the toll (after time 0). Denote also by F_n the cumulative distribution function² of X_n .
 - (a) Compute $F_n(t)$ for all $t \leq 0$.
 - (b) Let t > 0 and $n \in \mathbb{N}^*$. Explain why:

$$X_n \leqslant t \quad \Longleftrightarrow \quad N_t \geqslant n.$$

- (c) Deduce $F_n(t)$ for all $t \in \mathbb{R}$.
- (d) Show that a probability density function of X_n is given by:

$$f_n(t) = \begin{cases} \frac{\lambda^n}{(n-1)!} t^{n-1} e^{-\lambda t} & \text{if } t > 0, \\ 0 & \text{otherwise} \end{cases}$$

¹péage ²For all $t \in \mathbb{R}$, $F_n(t) = \mathbb{P}(X_n \leq t)$