Exercice 1. On reprend l'exercice 4 de la feuille de TD précédente. Soit a > 0 et (X, Y) un vecteur aléatoire tel que :

- (i) X est presque sûrement positif et $X \in L^2$.
- (ii) Pour tout $x \ge 0$, $\mathcal{L}(Y|X = x) = \mathcal{P}(ax)$.

On cherche à estimer a.

- (1) Ecrire la densité de Y|X = x.
- (2) Etant donnés $(x_1, y_1), \ldots, (x_n, y_n)$, posez l'équation de quasi-vraisemblance.
- (3) A quelle condition cette équation admet-elle exactement une solution?
- (4) Peut-on considérer que cette condition est raisonnable?
- (5) Calculez l'information de Fisher élémentaire (donnez-en une expression plus commode que celle du cours).
- (6) En admettant que les hypothèses (H1') à (H6') du cours sont vérifiées, quelle est la loi limite de $\sqrt{n}(\hat{a}-a)$?
- (7) Proposez un esimateur de la variance asymptotique et déduisez-en une fonction asymptotiquement pivotale pour a.
- (8) Vers quoi converge le couple $(\overline{X}, \overline{Y})$? Y a-t-il une loi limite pour $\sqrt{n}((\overline{X}, \overline{Y}) (?,?))$?
- (9) En utilisant la δ -méthode, retrouvez la convergence en loi de $\sqrt{n}(\hat{a}-a)$.

Exercice 2 (Lois multinomiales). Soit X une variable aléatoire prenant trois valeurs m_1 , m_2 et m_3 . Pour $i \in [1,3]$, on note $p_i = \mathbb{P}(X = m_i)$. Remarquons que, comme $p_3 = 1 - p_1 - p_2$, il n'est pas nécessaire d'estimer p_3 . Nous considérons la famille de ces lois indexées par $p_1 \in]0, 1[$, $p_2 \in]0, 1[$ et $p_1 + p_2 < 1$.

- (1) Etant donné un échantillon x_1, \ldots, x_n , écrivez la vraisemblance.
- (2) (Facultatif) Quelle est (sont) la (les) solution(s) éventuelles de l'équation de vraisemblance? On notera (\hat{p}_1, \hat{p}_2) la solution lorsqu'elle est unique.
- (3) Vérifiez que la modèle étudié est régulier puis donnez une fonction asymptotiquement pivotale pour (p_1, p_2) .
- (4) Appliquez le théorème central limite au vecteur $\sqrt{n}(\hat{p}_1 p_1, \hat{p}_2 p_2)$ et donnez un estimateur de la variance asymptotique. Déduisez-en une fonction asymptotiquement pivotale pour (p_1, p_2) .
- (5) Application numérique : $n = 100, \hat{p}_1 = 0, 2, \hat{p}_2 = 0, 3$.
 - (a) Donnez un intervalle de confiance asymptotique pour p_1 .
 - (b) Donnez un intervalle de confiance asymptotique pour p_2 .
 - (c) Donnez une région de confiance asymptotique pour (p_1, p_2) . Indication :

$$\left(\begin{array}{cc} 0,16 & -0,06 \\ -0,06 & 0,21 \end{array}\right)^{-1/2} \simeq \left(\begin{array}{cc} 2,61 & 0,41 \\ 0,41 & 2,27 \end{array}\right).$$

Exercice 3. Dans les modèles d'échantillonage de taille n suivants, trouvez une fonction pivotale, non asymptotiquement pivotale, faisant intervenir toutes les observations.

- (1) Lois uniformes sur $[0, \theta]$.
- (2) Lois exponentielles : $f_{\lambda}(x) = \lambda e^{-\lambda x}$, x > 0.
- (3) (Révisions) Lois normales $\mathcal{N}(\mu, \sigma^2)$, $\mu \in \mathbb{R}$ et $\sigma > 0$.