Exercice 1 (Test conditionnel). Soient n fixé et (x_1, \ldots, x_n) des éléments de $\{0; 1\}$ non tous nuls. On considère un échantillon Y_1, \ldots, Y_n de variables aléatoires indépendantes pour lesquelles on suppose qu'il existe $a \in \mathbb{R}$ tel que $Y_i \leadsto \mathcal{B}(F(ax_i))$ où F est la fonction de répartition de la loi normale centrée réduite. On veut tester $a \leq 10$ contre a > 10.

- 1) Ecrivez la vraisemblance du modèle.
- 2) Montrez que le modèle est à RVC.
- 3) En déduire un test dont le risque β est minimal pour un niveau α_0 donné. En quoi les constantes c et u dépendent-elles de (x_1, \ldots, x_n) ?
- 4) On suppose maintenant que l'on observe $Z = (X_i, Y_i)_{1 \le i \le n}$ où les Z_i sont i.i.d. et vérifient :
 - (i) Les X_i sont à valeurs dans $\{0; 1\}$.
 - (ii) Il existe $a \in \mathbb{R}$ tel que pour tout $x \in \{0, 1\}$, $\mathcal{L}(Y_i | X_i = x) = \mathcal{B}(F(ax))$.

Pour α_0 donné, proposez une procédure de test de niveau α_0 .

Exercice 2 (Calcul de puissance pour un test bilatéral). On suppose que l'on observe (X_1, \ldots, X_n) i.i.d. de loi $\mathcal{N}(\mu, \sigma^2)$. On suppose ici que σ est connu et on veut tester $\mu = 0$ contre $\mu \neq 0$.

- 1) Pour un niveau α_0 donné, quel test proposez-vous en utilisant la statistique $T = |\sqrt{n} \ \overline{X}|$? On notera d_n ce test.
- 2) Pour $\mu_1 \neq 0$ fixé, exprimez $\beta_{d_n}(\mu_1)$ en fonction de α_0 , n, σ , μ_1 et Φ où Φ est la fonction de répartition de la loi normale centrée réduite.
- 3) Montrez que:

$$\beta_{d_n}(\mu_1) \le \min\left(\Phi(z_{\alpha/2} - \sqrt{n}\mu_1/\sigma), \Phi(z_{\alpha/2} + \sqrt{n}\mu_1/\sigma)\right)$$

$$= \Phi(z_{\alpha/2} - \sqrt{n}|\mu_1|/\sigma)$$
(1)

4) Soient α'_0 et $\rho > 0$ fixés. En vous servant de (1), trouvez un entier $n_0(\alpha_0, \alpha'_0, \rho, \sigma)$ tel que pour tout $n \geq n_0$ on ait :

$$\sup_{\mu_1:|\mu_1|\geq\rho}\beta_{d_n}(\mu_1)\leq\alpha_0'\tag{2}$$

- 5) Quelle est la monotonie de n_0 suivant les variables α_0 , α'_0 , ρ et σ ? Cela paraît-il cohérent?
- 6) Supposons que (2) est vérifiée. Que peut-on conclure si $d_n(x) = 0$? Avec quel risque?

Exercice 3 (Calcul de puissance asymptotique). Soient (X_1, \ldots, X_n) i.i.d. de loi $\mathcal{B}(p_1)$ et (Y_1, \ldots, Y_n) de loi $\mathcal{B}(p_2)$. On suppose les X_i indépendantes des Y_i .

1) Montrez que:

$$\frac{\arcsin(\sqrt{\overline{X}}) - \arcsin(\sqrt{p_1})}{\sqrt{\frac{1}{4n}}} \xrightarrow{\mathcal{L}} \mathcal{N}(0,1).$$

On peut en fait montrer que :

$$\frac{\arcsin(\sqrt{\overline{X}}) - \arcsin(\sqrt{\overline{Y}}) - \Delta(p_1, p_2)}{\sqrt{\frac{1}{4n} + \frac{1}{4m}}} \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1),$$

où $\Delta(p_1, p_2) = \arcsin(\sqrt{p_1}) - \arcsin(\sqrt{p_2})$.

2) On veut tester $p_1=p_0$ contre $p_1\neq p_0,$ c'est-à-dire :

$$\mathcal{H}_0: \Delta(p_1, p_2) = 0$$
, contre $\mathcal{H}_1: \Delta(p_1, p_2) \neq 0$.

Pour α_0 fixé, proposez un test $d_{n,m}$ construit à partir de la statistique :

$$T_{n,m} = |\arcsin(\sqrt{\overline{X}}) - \arcsin(\sqrt{\overline{Y}})|.$$

3) Etant donnés $\alpha_0,\,\alpha_0'$ et $\rho>0,$ donnez une condition sur n et m pour que :

$$\sup_{p_1, p_2: \Delta(p_1, p_2) \ge \rho} \beta_{d_{n,m}}(p_1, p_2) \le \alpha'_0.$$