Exercice 2

Partie A

1.

$$A^2 = \mathbb{O}_3,$$
 $B^2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix},$ $B^3 = B.B^2 = \mathbb{O}_3.$

Donc, A est nilpotente d'indice 2 et B est nilpotente d'indice 3.

2

$$\exp(A) = I_3 + A = \begin{pmatrix} 1 & 0 & 0 \\ 8 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad \exp(B) = I_3 + B + \frac{1}{2}B^2 = \begin{pmatrix} 2 & \frac{3}{2} & 1 \\ 0 & 1 & 0 \\ -1 & -\frac{1}{2} & 0 \end{pmatrix}.$$

3.
$$\begin{pmatrix} 1 & 0 & 0 \\ 8 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \Leftrightarrow \begin{cases} x & = a \\ 8x + y & = b \\ z & = c \end{cases} \Leftrightarrow \begin{cases} x = a \\ y = -8a + b \\ z = c \end{cases}$$

$$\Leftrightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ -8 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}.$$

Donc, $\exp(A)$ est inversible et $\exp(A)^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -8 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

4.(a)

$$CX = \begin{pmatrix} 1 & 1 & 1 \\ 8 & 0 & 0 \\ -1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ -4 \\ 1 \end{pmatrix} = \begin{pmatrix} -2 \\ 8 \\ -2 \end{pmatrix} = -2X.$$

Donc, $\lambda = -2$.

4.(b) De la question précédente, on déduit facilement que, pour tout $n \in \mathbb{N}$,

$$C^n X = (-2)^n X = \begin{pmatrix} (-2)^n \\ -(-2)^{n+2} \\ (-2)^n \end{pmatrix} \neq \mathbb{O}_3 X$$
. Il vient que C^n est différente de \mathbb{O}_3 quel

que soit n.

Donc, la matrice C = A + B n'est pas nilpotente.

Partie B

1. Puisque M et N commutent, on peut utiliser la formule du binôme :

$$(M+N)^4 = \binom{4}{0} M^4 N^0 + \binom{4}{1} M^3 N^1 + \binom{4}{2} M^2 N^2 + \binom{4}{3} M^1 N^3 + \binom{4}{4} M^0 N^4.$$

Or, par hypothèse, $M^2 = M^3 = M^4 = \mathbb{O}_3$ et $N^3 = N^4 = \mathbb{O}_3$. Donc, $(M+N)^4 = \mathbb{O}_3$: M+N est nilpotente.

2.
$$\exp(M) \exp(N) = (I_3 + M)(I_3 + N + \frac{1}{2}N^2)$$

= $I_3 + N + M + \frac{1}{2}N^2 + MN + \frac{1}{2}MN^2$

De plus

$$\exp(M+N) = I_3 + (M+N) + \frac{1}{2}(M+N)^2 + \frac{1}{6}(M+N)^3$$

$$= I_3 + M + N + \frac{1}{2}(M^2 + 2MN + N^2) + \frac{1}{6}(M^3 + 3M^2N + 3MN^2 + N^3)$$

$$= I_3 + M + N + \frac{1}{2}(O_3 + 2MN + N^2) + \frac{1}{6}(O_3 + 3O_3N + 3MN^2 + O_3)$$

$$= I_3 + M + N + MN + \frac{1}{2}N^2 + \frac{1}{2}MN^2$$

Il vient que $\exp(M+N) = \exp(M)\exp(N)$.

$$\exp(N)\exp(-N) = (I_3 + N + \frac{1}{2}N^2) (I_3 - N + \frac{1}{2}N^2)$$

$$= [(I_3 + \frac{1}{2}N^2) + N] [(I_3 + \frac{1}{2}N^2) - N]$$

$$= (I_3 + N^2 + \frac{1}{4}N^4) - N^2$$

$$= I_3 \qquad (\operatorname{car} N^4 = \mathbb{O}_3).$$

Il vient que $\exp(N)$ est inversible et $\exp(N)^{-1} = \exp(-N) = I_3 - N + \frac{1}{2}N^2$.

Exercice 3

Partie A

1. Pour tout $x \in]0; 1], f(x) - x = x(2\cosh(x) - 1)$ est du signe de $2\cosh(x) - 1$.

Or
$$x > 0 \Longrightarrow \cosh(x) > \cosh(0) \Longrightarrow \cosh(x) > 1 \Longrightarrow 2 \cosh(x) > 2$$

 $\Longrightarrow 2 \cosh(x) - 1 > 1 > 0$
Donc $\forall x \in]0; 1], f(x) - x > 0$

2. f est dérivable sur [0; 1] et $\forall x \in [0; 1]$, $f'(x) = 2(1 \times \cosh(x) + x \sinh(x)) = 2(x \sinh(x) + \cosh(x))$. Or $x \sinh(x) \ge 0$ et $\cosh(x) \ge 1 > 0$. Donc $\forall x \in [0; 1]$, f'(x) > 0 La fonction f est continue et strictement croissante sur l'intervalle [0; 1].

Corrigé Final - MT11 - A2011

Donc, d'après le théorème dit «de la bijection», f est bijective de [0;1] sur l'intervalle image $f([0;1]) = [f(0);f(1)] = [0;2\cosh 1]$

On en déduit les tableaux de variation de f et de sa réciproque f^{-1} :

x	0		1
f'(x)		+	
			$2 \cosh 1$
f(x)		7	
	0		

et

x	0		$2 \cosh 1$
			1
$f^{-1}(x)$		7	
	0		

3. La fonction exp admet pour développement limité à l'ordre 2 en 0 :

$$e^{x} = 1 + x + \frac{x^{2}}{2} + x^{2} \varepsilon_{1}(x)$$
 avec $\lim_{x \to 0} \varepsilon_{1}(x) = 0$

On en déduit que
$$e^{-x} = 1 - x + \frac{x^2}{2} + x^2 \varepsilon_1(-x)$$

puis que $\cosh(x) = \frac{e^x + e^{-x}}{2} = 1 + \frac{x^2}{2} + x^2 \varepsilon_2(x)$ avec $\lim_{x \to 0} \varepsilon_2(x) = 0$

Donc la fonction f admet un développement limité à l'ordre 3 en 0 donné par :

$$f(x) = 2x \left(1 + \frac{x^2}{2} + x^2 \varepsilon_2(x)\right) = 2x + x^3 + x^3 \varepsilon(x)$$

avec $\lim_{x \to 0} \varepsilon(x) = 0$

Partie B

- 1. Montrons par récurrence sur $n \in \mathbb{N}$, que $u_n \in]0; 1]$
 - Initialisation : $u_0 = 1 \in [0; 1]$
 - **Hérédité**: Soit $n \in \mathbb{N}$. On suppose que $u_n \in]0; 1]$. Comme $]0; 1] \subset]0; 2 \cosh 1], f^{-1}(u_n) \in]0; 1] car pour tout réel <math>x$ de $]0; 2 \cosh 1], f^{-1}(x) \in]0, 1]$ Donc $u_{n+1} \in]0; 1]$
 - Conclusion : d'après le principe de récurrence,

$$\forall n \in \mathbb{N}, \quad u_n \in]0; 1]$$

2. (a) Soit n un entier naturel quelconque fixé.

$$u_{n+1} = f^{-1}(u_n) \Longrightarrow u_n = f(u_{n+1})$$

On a vu en **B**1. que $u_{n+1} \in]0;1]$ et en **A**1 que $\forall x \in]0;1], f(x)-x>0$

Donc $f(u_{n+1}) - u_{n+1} > 0$ c'est-à-dire $u_n - u_{n+1} > 0$.

Ainsi la suite $(u_n)_{n\in\mathbb{N}}$ est strictement décroissante.

(b) On a vu que $\forall n \in \mathbb{N}, u_n > 0$. La suite (u_n) est décroissante et minorée par 0. Elle est donc convergente. Notons L sa limite.

Comme pour tout entier naturel $n, u_n \in [0; 1]$, on obtient par passage à la limite, $L \in [0; 1]$.

Comme f^{-1} est continue sur $[0; 2\cosh 1]$ (en tant que réciproque d'une fonction continue et strictement croissante), elle est continue en L.

On en déduit que $\lim_{n\to+\infty} f^{-1}(u_n) = f^{-1}(L)$.

Or
$$\lim_{n \to +\infty} f^{-1}(u_n) = \lim_{n \to +\infty} u_{n+1} = \lim_{n \to +\infty} u_n = L$$

Donc, par unicité de la limite d'une suite, $f^{-1}(L) = L$ ce qui implique que L = f(L). Or selon la question A1, la seule solution sur [0; 1] de l'équation f(x) = x est 0. On a donc L = 0 et $\lim_{n \to +\infty} u_n = 0$

3. (a) • Soit $n \in \mathbb{N}$, n fixé.

$$u_{n+1} = f^{-1}(u_n) \quad \text{d'où} \quad u_n = f(u_{n+1}) = 2u_{n+1}\cosh(u_{n+1})$$

$$\operatorname{donc} \quad \frac{a_{n+1}}{a_n} = \frac{2^{n+1}u_{n+1}}{2^nu_n} = \frac{2u_{n+1}}{u_n} = \frac{2u_{n+1}}{2u_{n+1}\cosh(u_{n+1})} = \frac{1}{\cosh(u_{n+1})}$$

• Puisque $u_{n+1} > 0$, $\cosh(u_{n+1}) > 1$ et $0 < \frac{1}{\cosh(u_{n+1})} < 1$.

On en déduit que $\frac{a_{n+1}}{a_n} < 1$. Donc $\forall n \in \mathbb{N}, a_{n+1} < a_n$ ce qui signifie que la suite (a_n) est strictement décroissante.

(b) La suite (a_n) est strictement décroissante. Elle est de plus minorée par zéro. On en déduit qu'elle est convergente et que sa limite ℓ vérifie : $0 \le \ell < a_0$.

En admettant que $\ell \neq 0$, on peut conclure que

$$u_n \underset{(n \longrightarrow +\infty)}{\sim} \frac{\ell}{2^n}$$