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Exercice 1 A =

 2 3 −2
1/2 3 −1/2
−1 3 1


1. (a) On calcule le polynôme caractéristique de A sous forme factorisée :

χA(X) = det(A−X I3) =

∣∣∣∣∣∣
2−X 3 −2
1/2 3−X −1/2
−1 3 1−X

∣∣∣∣∣∣
=

∣∣∣∣∣∣
3−X 3 −2
3−X 3−X −1/2
3−X 3 1−X

∣∣∣∣∣∣ C1 ← C1 + C2 + C3

=

∣∣∣∣∣∣
3−X 3 −2

0 −X 3/2
0 0 3−X

∣∣∣∣∣∣ L2 ← L2 − L1

L3 ← L3 − L1

= −X(3−X)2 dét. d’une matrice triangulaire

Donc A admet deux valeurs propres réelles : zéro de multiplicité 1 et λ = 3
de multiplicité 2.

(b) AU0 =

 2 3 −2
1/2 3 −1/2
−1 3 1

1
0
1

 =

0
0
0

 = 0 · U0

Donc U0 ∈ Ker(A) ce qui revient à dire que U0 =

1
0
1

 est un vecteur propre

de A, associé à la valeur propre zéro.

(c) • On rappelle que λ = 3. On pose U =

x
y
z

 ∈M3,1(R)

U ∈ E3(A) ⇐⇒ AU = 3U ⇐⇒


2x+ 3y − 2z = 3x

x/2 + 3y − z/2 = 3y

−x+ 3y + z = 3z

⇐⇒


−x+ 3y − 2z = 0

x/2− z/2 = 0

−x+ 3y − 2z = 0

⇐⇒

{
−x+ 3y − 2z = 0

z = x

⇐⇒

{
y = x

z = x
⇐⇒ U = x

1
1
1



En posant U1 =

1
1
1

, on voit que Eλ(A) = Vect(U1) est de dimension 1.

• Comme la valeur propre 0 est de multiplicité 1, le sous-espace propre as-
socié à 0, qui est aussi le noyau de A, est de dimension 1 :

E0(A) = Ker(A) = Vect(U0)

La somme des dimensions des deux sous-espaces propres de A est égale 2

qui n’est pas l’ordre de A. On en déduit que A n’est pas diagonalisable .

2. Soit f l’endomorphisme de R3 tel que A = MatB0
(f).

(a) • On doit avoir f(ε1) = (0, 0, 0) , f(ε2) = λ ε2 et f(ε3) = ε2 + λ ε3.
Donc ε1 est un vecteur propre de f associé à la valeur propre zéro : on
choisit ε1 = (1, 0, 1) . De même ε2 est un vecteur propre de f associé à la

valeur propre λ : on choisit ε2 = (1, 1, 1) .

• Il reste à choisir ε3. Posons ε3 = (x, y, z).

Alors f(ε3) = ε2 + λ · ε3 ⇐⇒ A

x
y
z

 = U1 + λ

x
y
z


⇐⇒ (A− 3 I3)

x
y
z

 = U1 ⇐⇒

 −x+ 3y − 2z = 1
x/2− z/2 = 1

−x+ 3y − 2z = 1

⇐⇒
{
−x+ 3y − 2z = 1

x− z = 2
⇐⇒

{
x = z + 2
−z − 2 + 3y − 2z = 1

⇐⇒

 x = z + 2
y = z + 1
z = z

On choisit de prendre ε3 = (3, 2, 1)

• Montrons que la famille B = (ε1 , ε2 , ε3) est une base de R3 en calculant
son déterminant dans la base canonique B0.

detB0
(ε1 , ε2 , ε3) =

∣∣∣∣∣∣
1 1 3
0 1 2
1 1 1

∣∣∣∣∣∣ =
L3←L3−L1

∣∣∣∣∣∣
1 1 3
0 1 2
0 0 −2

∣∣∣∣∣∣
= 1× 1× 1× (−2) = −2 ̸= 0

(b) D’après la formule de changement de base appliquée à l’endomorphisme f ,
en notant P la matrice de passage de la base canonique B0 vers la «nouvelle»
base B :
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MatB(f) = P−1MatB0(f)P c’est-à-dire T = P−1AP

avec P =

1 1 3
0 1 2
1 1 1


(c) On déduit de la question précédente que A = P T P−1

puis que ∀n ∈ N, An = P Tn P−1

3. Posons D = diag(0, λ, λ) et N =

0 0 0
0 0 1
0 0 0

.

Alors T = D + N et on vérifie, par des calculs de produits de matrices, que
ND = λN = DN et que N2 = O3.

On en déduit que pour tout entier k ⩾ 2, Nk = O3.

Puisque les matrices D et N commutent, on obtient par la formule du binôme de
Newton (n ∈ N⋆) :

Tn = (D + T )n =

n∑
k=0

(
n

k

)
Dn−kNk =

1∑
k=0

(
n

k

)
Dn−kNk = Dn +

(
n

1

)
Dn−1N

= Dn + nDn−1N = Dn + nλn−1N =

0 0 0
0 λn nλn−1

0 0 λn



4. On pose, pour tout n ∈ N, Xn =

un

vn
wn

.

(a) X1 =

u1

v1
w1

 =

 2u0 + 3v0 − 2w0

u0/2 + 3v0 − w0/2
−u0 + 3v0 + w0

 =

7
4
1


u2 = 2u1 + 3v1 − 2w1 = 14 + 12− 2 = 24.

(b) Xn+1 = AXn d’où Xn = An X0 = P Tn P−1 X0 d’après 2.(c)

(c) On admet que ∃ (α, β) ∈ R2 ; ∀n ∈ N⋆, un = α 3n + β n 3n−1

Pour n = 1 : u1 = α 31 + β × 1× 31−1 = 3α+ β
Pour n = 2 : u2 = α 32 + β × 2× 32−1 = 9α+ 6β.

{
3α+ β = 7
9α+ 6β = 24

=⇒
{

3α+ β = 7
3α+ 2β = 8

=⇒
L2←L2−L1

{
3α = 7− β
β = 1

{
3α = 6
β = 1

Finalement ∀n ∈ N⋆, un = 2× 3n + n 3n−1
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Exercice 2

1. Posons, pour tout n ∈ N, un =
nα

2n
. Alors, pour tout n ⩾ 1, un > 0. De plus,

pour tout n ∈ N∗,

un+1

un
=

(n+ 1)α

2n+1
× 2n

nα
=

1

2

(
n+ 1

n

)α

=
1

2

(
1 +

1

n

)α

−→
n→+∞

1

2
< 1.

D’après le critère de D’Alembert, la série
∑ nα

2n
est absolument convergente,

donc convergente.

2. Soit (P,Q,R) ∈ E3 et λ ∈ R.

• Symétrie : φ(Q,P ) =
1

2n

+∞∑
n=0

1

2n
Q(n)P (n) =

+∞∑
n=0

P (n)Q(n) = φ(P,Q).

• Bilinéarité :

φ(λP +Q,R) =

+∞∑
n=0

1

2n
(λP (n) +Q(n))R(n)

=

+∞∑
n=0

λ
1

2n
P (n)R(n) +

1

2n
Q(n)R(n).

Les séries
∑ 1

2n
P (n)R(n) et

∑ 1

2n
Q(n)R(n) étant convergentes, on a, par

linéarité :

φ(λP+Q,R) = λ

+∞∑
n=0

1

2n
P (n)R(n)+

+∞∑
n=0

1

2n
Q(n)R(n) = λφ(P,R)+φ(Q,R).

φ est donc linéaire à gauche. Par symétrie, φ est aussi linéaire à droite, donc
bilinéaire.

• Positivité : φ(P, P ) =

+∞∑
n=0

1

2n
P 2(n) ⩾ 0 (la somme d’une série convergente

à termes positifs est positive).

• Caractère défini : φ(P, P ) = 0 =⇒
+∞∑
n=0

1

2n
P 2(n) = 0 =⇒

∀n ∈ N,
1

2n
P 2(n) = 0 =⇒ ∀n ∈ N, P 2(n) =⇒ ∀n ∈ N, P (n) = 0.

Le polynôme P admet une infinité de racines, il s’agit donc du polynôme
nul. Donc φ(P, P ) = 0 =⇒ P = 0E .

φ est donc un produit scalaire sur E.

3. S0 =

+∞∑
n=0

1

2n
=

1

1− 1
2

=
1
1
2

= 2 (somme d’une série géométrique de raison
1

2
).

S1 =

+∞∑
n=0

n

2n
=

1

2

+∞∑
n=1

n

(
1

2

)n−1

=
1

2
× 1

(1− 1
2 )

2
=

1

2
× 4 = 2 (où l’on a utilisé le

résultat du cours sur la somme d’une série géométrique dérivée).

4. (a) Posons P = X2 − aX − b, avec (a, b) ∈ R2{
P ⊥ 1

P ⊥ X
⇐⇒

{
φ(P, 1) = 0

φ(P,X) = 0

par bilinéarité⇐⇒

{
φ(X2, 1)− aφ(X, 1)− bφ(1, 1) = 0

φ(X2, X)− aφ(X,X)− bφ(X, 1) = 0
⇐⇒

{
S1a+ bS0 = S2

S2a+ S1b = S3

⇐⇒

{
2a+ 2b = 6

6a+ 2b = 26

L2←L2−L1⇐⇒

{
a+ b = 3

4a = 20
⇐⇒

{
a = 5

b = −2

Ainsi, P = X2 − aX − b est orthogonal à 1 et à X si et seulement si
(a, b) = (5,−2).

(b) Rappelons que le projeté orthogonal pF (X2) de X2 sur F = Vect(1, X) est

caractérisé par

{
PF (X

2) ∈ F

X2 − pF (X
2) ∈ F⊥

.

Soit Q = 5X−2. Alors Q ∈ F . D’autre part, d’après la question précédente,
X2 −Q ⊥ 1 et X2 −Q ⊥ X. Donc X2 −Q ∈ F⊥. On en déduit alors que
pF (X

2) = Q = 5X − 2.
(c) Soit d(X2, F ) la distance de X2 à F . Alors

d(X2, F ) = ∥X2 − pF (X
2)∥ = ∥X2 − 5X + 2∥.

D’après le théorème de Pythagore,

∥X2 − 5X + 2∥2 = ∥X2∥2 − ∥5X − 2∥2 = φ(X2, X2)− φ(5X − 2, 5X − 2)

= φ(X2, X2)− 25φ(X,X) + 20φ(X, 1)− 4φ(1, 1)

= S4 − 25S2 + 20S1 − 4S0

= 150− 150 + 40− 8

= 32.

La distance recherchée est donc égale à
√
32 = 4

√
2.
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Exercice 3

1. (a) La fonction t 7→ e−t
2

est continue et positive sur [0,+∞[. De plus, par
croissances comparées, lim

t→+∞
t2e−t

2

= 0. D’après le critère de Riemann,

l’intégrale
∫ +∞

0

e−t
2

dt est convergente.

(b) Pour tout x ∈ R et tout t ⩾ 0, on a l’encadrement 0 ⩽
∣∣∣sin(xt)e−t2∣∣∣ ⩽ e−t

2

.

D’après la question 1. (a), l’intégrale
∫ +∞

0

e−t
2

dt converge, donc d’après

le critère de comparaison, les fonctions en présence étant continues et posi-

tives sur [0,+∞[, l’intégrale
∫ +∞

0

∣∣∣sin(xt)e−t2∣∣∣ dt est convergente. Ainsi,

l’intégrale
∫ +∞

0

sin(xt)e−t
2

dt est absolument convergente, donc conver-

gente.

2. Soit A > 0. Posons u : t 7→ cos(xt), v′(t) = te−t
2

. Alors u′(t) = −x sin(xt) et

v(t) = −1

2
e−t

2

(par exemple). Les fonctions u et v sont de classe C1 sur l’intervalle
[0, A]. Par intégration par parties, on a∫ A

0

t cos(xt)e−t
2

dt =

[
−1

2
cos(xt)e−t

2

]A
0

−
∫ A

0

(−x sin(xt))
(
−1

2
e−t

2

)
dt

= −1

2
cos(xA)e−A

2

+
1

2
− x

2

∫ A

0

sin(xt)e−t
2

dt (⋆)

Or, pour tout x ∈ R et tout A > 0, 0 ⩽

∣∣∣∣−1

2
cos(xA)e−A

2

∣∣∣∣ ⩽ e−A
2

2
. Comme

lim
A→+∞

e−A
2

2
= 0, par encadrement, on a lim

A→+∞
−1

2
cos(xA)e−A

2

= 0.

En passant à la limite lorsque A tend vers +∞ dans l’égalité (⋆), on obtient, pour
tout x ∈ R :

S′(x) =
1

2
− x

2
S(x).

3. (a) L’équation homogène associée à (E) est (H) : y′ +
x

2
y = 0. Une primitive

sur R de la fonction x 7→ x

2
est x 7→ x2

4
. D’après le cours, ses solutions sont

les fonctions de la forme yH : x 7→ λe−x
2/4, où λ ∈ R.

(b) La fonction t 7→ et
2/4 est continue sur R. D’après le théorème fondamental

de l’analyse, la fonction Φ : x 7→
∫ x

0

et
2/4 dt est dérivable sur R, et pour

tout x ∈ R, Φ′(x) = ex
2/4.

La fonction f est donc dérivable sur R comme produit de fonctions dériv-
ables, et pour tout x ∈ R,

f ′(x) =
1

2
×
(
−x

2
e−x

2/4
)∫ x

0

et
2/2 dt+

1

2
e−x

2/4ex
2/4

= −x

4
e−x

2/4

∫ x

0

et
2/2 dt+

1

2

= −x

2
f(x) +

1

2
.

Ainsi, pour tout x ∈ R,

f ′(x) +
x

2
f(x) =

1

2
,

et f est une solution de (E).
(c) D’après le cours, les solutions de (E) sur R sont les fonctions de la forme

y : x 7→ λe−x
2/4 + f(x), où λ ∈ R.

4. D’après la question 2., la fonction S est solution de l’équation différentielle (E)
sur R.

De plus, S(0) =
∫ +∞

0

sin(0)e−t
2

dt =
∫ +∞

0

0 dt = 0. Ainsi, S est l’unique solu-

tion du problème de Cauchy y′ +
x

2
y =

1

2
y(0) = 0

.

Il existe donc un réel λ tel que, pour tout x ∈ R,

S(x) = λe−x
2/4 + f(x).

De plus, on a les équivalences :

S(0) = 0⇐⇒ λe0 + f(0) = 0⇐⇒ λ = −f(0) = 0

On en déduit que, pour tout x ∈ R,

S(x) = f(x) =
1

2
e−x

2/4

∫ x

0

et
2/4 dt .


